
Introduction to the
Document Object Model

Before we DOM it up

• Rest / Spread Operators

• Array.isArray and why we need it

Rest / Spread Operator
• The Rest / Spread operator (…) was introduced in ES6

and provides some great functionality.

• Rest: used in functions to gather any nth number of
arguments that may be passed after the defined
parameter into an array.

• Spread: opposite of Rest, and is used to restructure an
array (or array-like object) into individual parts. Simplest
use case is to concatenate arrays, but has many other
helpful use cases.

Array.isArray
• As we noticed yesterday with our typeof demo, Arrays []

are actually Objects. This has to do with the fact that
Arrays are descendants of the Object prototype chain. We
will attempt to dive into this more in the future, but here is
a good medium article discussing the prototype chain:
https://codeburst.io/master-javascript-prototypes-
inheritance-d0a9a5a75c4e

• Because we cannot use typeof to determine if something
is an Array, the Array.isArray(value) method was created
to serve this purpose.

https://codeburst.io/master-javascript-prototypes-inheritance-d0a9a5a75c4e
https://codeburst.io/master-javascript-prototypes-inheritance-d0a9a5a75c4e

You’re about to learn

• What is the DOM?

• Why should we care?

• DOM Manipulation

• Searching the DOM

• How to traverse the DOM

• How to change the DOM

What is the DOM?

What is the DOM?

The Document Object Model is what allows web
pages to render, respond to user events, and

change

The DOM is a tree
• The main idea here: There is a

root Node that branches into
other Nodes, known as its
children Nodes

• Each Node can have none
or many children Nodes

• Nodes can have 0 or 1
parent

• Nodes can have 0 to many
Sibling Nodes

Browser Dev Tools
(Chrome, Firefox)

Why do we care?

The DOM makes it possible to use
JavaScript to manipulate the document

content and structure

Nodes have lots of
Attributes

• Nodes are JavaScript Objects

• Nodes have Attributes that are JavaScript properties

• Attributes define how the Node looks and responds to
User activity

The document Object

• ‘document’ is the Global reference to the DOM entry point

• Provides methods for navigating and manipulating the
DOM

• The document object is the important connection
between the DOM and JavaScript code˜

Searching the DOM
• getElementById - finds node with a certain ID attribute

• document.getElementById(“will”);

• getElementsByClassName - finds nodes with a certain CLASS attribute

• document.getElementsByClassName(“will”)

• getElementsByTagName - finds nodes with a certain HTML tag

• document.getElementsByTagName(“div”);

• querySelector, querySelectorAll - searches using CSS selectors

• document.querySelector(“#will .will:first-child”);

Array-Like Objects?
• When you use any DOM selector methods that will return a collection of

Nodes, what is returned is an object called HTMLCollection (or NodeList
if you use querySelectorAll).

• This NodeList looks suspiciously like an array, but it is not.

 const divList = document.getElementsByTagName(“div”)

 Array.isArray(divList) // false

• The NodeList is still zero-indexed, and values are accessible by index look-up like
arrays, e.g. divList[0] gets you the first element.

• However, you won’t have access to any of the array methods available to true
arrays, and therefore are somewhat limited in how you could programmatically
operate over the NodeList

Array-Like Objects?

• There are three ways to get around this:

• const divArr = [].prototype.slice.call(divList)

• const divArr = Array.from(divList)

• const divArr = […divList]

Traversing the DOM
• As the DOM is a Tree Structure, it is relatively easy to

navigate because:

• At any point in the DOM you are at a Node

• No matter where you go, you’re still at a Node

• Child

• Parent

• Sibling

• All Nodes share similar DOM navigation methods

Traversing the DOM
• Access children Nodes

element.children, element.lastChild, element.firstChild

• Access sibling Nodes

element.nextElementSibling, element.previousElementSibling

• Access parent Node (if any)

element.parentElement

Changing the DOM:
Changing style attributes

• CSS

• background-color

• border-radius

• font-weight

• list-style-type

• word-spacing

• z-index

• JavaScript

• backgroundColor

• borderRadius

• fontWeight

• listStyleType

• wordSpacing

• zIndex

element.style.fontWeight = “bold”;

Changing the DOM:
Changing CSS Classes

• className attribute is a string of all of a Node’s classes

• classList is HTML5 way to modify which classes are on a Node

document.getElementById(“MyElement”).classList.add(‘class’);

document.getElementById(“MyElement”).classList.remove(‘class’);

if(document.getElementById(“MyElement”).classList.contains(‘class’)){

 document.getElementById(“MyElement”).classList.toggle(‘class’);

}

Changing the DOM:
Creating Elements

• Create an element

• document.createElement(tagName)

• Duplicate an existing Node

• node.cloneNode()

• Nodes are just free floating, and not connected to the
document itself until you link them to the DOM.

Changing the DOM:
Adding Elements to the DOM
• Insert newNode at end of current Node

• node.appendChild(newNode);

• Insert newNode at beginning of current Node

• node.prependChild(newNode);

• Insert newNode before a certain childNode

• node.insertBefore(newNode, sibling);

Changing the DOM:
Removing Elements

• Remove the oldNode child

• node.removeChild(oldNode)

• Quick hack:

• oldNode.parentNode.removeChild(oldNode)

JS Event Handling

What is an event?

• A JavaScript event is a callback that gets fired when
something happens related to the DOM on your website.

• For instance, when an element is clicked, or perhaps
hovered over

• An event handler can be attached to an element so that
when a specific event happens, a specific “callback”
function gets fired

Listening for events - native JS

document.getElementById(“myId”).addEventListener(“click”, function(event){
 alert(‘you clicked me’)
}

• The key bit to the snippet above is the .addEventListener, which attaches an event
handler (an anonymous function to execute) when the element is clicked

• There are many other events to listen for, too, such as:

• hover

• keyup / keydown

• mouseover

• scroll

The HTML <form> element
• The login, signup, and address forms you see online all

share a common tag: <form>

• Inside of <form> are several elements that make up forms:

• Text input boxes

• Dropdown

• Radio buttons,

• Checkboxes, etc

<form> example

Don’t worry about action and method for now - also don’t
worry about submitting your form just yet.

Retrieve input from a form
element

You can see what’s inside of a form element fairly easily,
using the .value attribute:

Get the title of the form

Imagine a <form> with an <h1> tag above it that has the
form title. We can use the attribute .innerText to retrieve

the title inside the <h1> tag, or even change it.

Get the title of the form

Change the content of a
<div>

Let’s now say that our <h1> lives inside of a <div>. Using
the .innerHTML attribute, we can change the innerHTML

of the <div> entirely.

Change the content of a <div>

Assignment

